Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 22(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38667781

RESUMEN

This study focuses on the optimization of chitin oxidation in C6 to carboxylic acid and its use to obtain a hydrogel with tunable resistance. After the optimization, water-soluble crystalline ß-chitin fibrils (ß-chitOx) with a degree of functionalization of 10% were obtained. Diverse reaction conditions were also tested for α-chitin, which showed a lower reactivity and a slower reaction kinetic. After that, a set of hydrogels was synthesized from ß-chitOx 1 wt.% at pH 9, inducing the gelation by sonication. These hydrogels were exposed to different environments, such as different amounts of Ca2+, Na+ or Mg2+ solutions, buffered environments such as pH 9, PBS, pH 5, and pH 1, and pure water. These hydrogels were characterized using rheology, XRPD, SEM, and FT-IR. The notable feature of these hydrogels is their ability to be strengthened through cation chelation, being metal cations or hydrogen ions, with a five- to tenfold increase in their storage modulus (G'). The ions were theorized to alter the hydrogen-bonding network of the polymer and intercalate in chitin's crystal structure along the a-axis. On the other hand, the hydrogel dissolved at pH 9 and pure water. These bio-based tunable hydrogels represent an intriguing material suitable for biomedical applications.


Asunto(s)
Quitina , Hidrogeles , Oxidación-Reducción , Hidrogeles/química , Quitina/química , Concentración de Iones de Hidrógeno , Metales/química , Reología , Hidrógeno/química , Espectroscopía Infrarroja por Transformada de Fourier
2.
ACS Omega ; 9(10): 11232-11242, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38496946

RESUMEN

Waste seashells from aquaculture are a massive source of biogenic calcium carbonate (bCC) that can be a potential substitute for ground calcium carbonate and precipitated calcium carbonate. These last materials find several applications in industry after a surface coating with hydrophobic molecules, with stearate as the most used. Here, we investigate for the first time the capability of aqueous stearate dispersions to coat bCC powders from seashells of market-relevant mollusc aquaculture species, namely the oyster Crassostrea gigas, the scallop Pecten jacobaeus, and the clam Chamelea gallina. The chemical-physical features of bCC were extensively characterized by different analytical techniques. The results of stearate adsorption experiments showed that the oyster shell powder, which is the bCC with a higher content of the organic matrix, showed the highest adsorption capability (about 23 wt % compared to 10 wt % of geogenic calcite). These results agree with the mechanism proposed in the literature in which stearate adsorption mainly involves the formation of calcium stearate micelles in the dispersion before the physical adsorption. The coated bCC from oyster shells was also tested as fillers in an ethylene vinyl acetate compound used for the preparation of shoe soles. The obtained compound showed better mechanical performance than the one prepared using ground calcium. In conclusion, we can state that bCC can replace ground and precipitated calcium carbonate and has a higher stearate adsorbing capability. Moreover, they represent an environmentally friendly and sustainable source of calcium carbonate that organisms produce by high biological control over composition, polymorphism, and crystal texture. These features can be exploited for applications in fields where calcium carbonate with selected features is required.

3.
Plant J ; 118(4): 1054-1070, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308388

RESUMEN

Alcohol dehydrogenases (ADHs) are a group of zinc-binding enzymes belonging to the medium-length dehydrogenase/reductase (MDR) protein superfamily. In plants, these enzymes fulfill important functions involving the reduction of toxic aldehydes to the corresponding alcohols (as well as catalyzing the reverse reaction, i.e., alcohol oxidation; ADH1) and the reduction of nitrosoglutathione (GSNO; ADH2/GSNOR). We investigated and compared the structural and biochemical properties of ADH1 and GSNOR from Arabidopsis thaliana. We expressed and purified ADH1 and GSNOR and determined two new structures, NADH-ADH1 and apo-GSNOR, thus completing the structural landscape of Arabidopsis ADHs in both apo- and holo-forms. A structural comparison of these Arabidopsis ADHs revealed a high sequence conservation (59% identity) and a similar fold. In contrast, a striking dissimilarity was observed in the catalytic cavity supporting substrate specificity and accommodation. Consistently, ADH1 and GSNOR showed strict specificity for their substrates (ethanol and GSNO, respectively), although both enzymes had the ability to oxidize long-chain alcohols, with ADH1 performing better than GSNOR. Both enzymes contain a high number of cysteines (12 and 15 out of 379 residues for ADH1 and GSNOR, respectively) and showed a significant and similar responsivity to thiol-oxidizing agents, indicating that redox modifications may constitute a mechanism for controlling enzyme activity under both optimal growth and stress conditions.


Asunto(s)
Alcohol Deshidrogenasa , Proteínas de Arabidopsis , Arabidopsis , Oxidación-Reducción , Arabidopsis/enzimología , Arabidopsis/genética , Alcohol Deshidrogenasa/metabolismo , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Especificidad por Sustrato , S-Nitrosoglutatión/metabolismo , Secuencia de Aminoácidos , Etanol/metabolismo
4.
J Mater Chem B ; 12(8): 2083-2098, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38284627

RESUMEN

Calcium phosphates are widely studied in orthopedics and dentistry, to obtain biomimetic and antibacterial implants. However, the multi-substituted composition of mineralized tissues is not fully reproducible from synthetic procedures. Here, for the first time, we investigate the possible use of a natural, fluorapatite-based material, i.e., Lingula anatina seashell, resembling the composition of bone and enamel, as a biomaterial source for orthopedics and dentistry. Indeed, thanks to its unique mineralization process and conditions, L. anatina seashell is among the few natural apatite-based shells, and naturally contains ions having possible antibacterial efficacy, i.e., fluorine and zinc. After characterization, we explore its deposition by ionized jet deposition (IJD), to obtain nanostructured coatings for implantable devices. For the first time, we demonstrate that L. anatina seashells have strong antibacterial properties. Indeed, they significantly inhibit planktonic growth and cell adhesion of both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The two strains show different susceptibility to the mineral and organic parts of the seashells, the first being more susceptible to zinc and fluorine in the mineral part, and the second to the organic (chitin-based) component. Upon deposition by IJD, all films exhibit a nanostructured morphology and sub-micrometric thickness. The multi-doped, complex composition of the target is maintained in the coating, demonstrating the feasibility of deposition of coatings starting from biogenic precursors (seashells). In conclusion, Lingula seashell-based coatings are non-cytotoxic with strong antimicrobial capability, especially against Gram-positive strains, consistently with their higher susceptibility to fluorine and zinc. Importantly, these properties are improved compared to synthetic fluorapatite, showing that the films are promising for antimicrobial applications.


Asunto(s)
Exoesqueleto , Antiinfecciosos , Animales , Biomimética , Flúor , Materiales Biocompatibles Revestidos/farmacología , Antibacterianos/farmacología , Apatitas/farmacología , Zinc/farmacología , Odontología
5.
Cryst Growth Des ; 24(2): 657-668, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38250544

RESUMEN

Nanocrystalline calcium carbonate (CaCO3) and amorphous CaCO3 (ACC) are materials of increasing technological interest. Nowadays, they are mainly synthetically produced by wet reactions using CaCO3 reagents in the presence of stabilizers. However, it has recently been discovered that ACC can be produced by ball milling calcite. Calcite and/or aragonite are the mineral phases of mollusk shells, which are formed from ACC precursors. Here, we investigated the possibility to convert, on a potentially industrial scale, the biogenic CaCO3 (bCC) from waste mollusk seashells into nanocrystalline CaCO3 and ACC. Waste seashells from the aquaculture species, namely oysters (Crassostrea gigas, low-Mg calcite), scallops (Pecten jacobaeus, medium-Mg calcite), and clams (Chamelea gallina, aragonite) were used. The ball milling process was carried out by using different dispersing solvents and potential ACC stabilizers. Structural, morphological, and spectroscopic characterization techniques were used. The results showed that the mechanochemical process produced a reduction of the crystalline domain sizes and formation of ACC domains, which coexisted in microsized aggregates. Interestingly, bCC behaved differently from the geogenic CaCO3 (gCC), and upon long milling times (24 h), the ACC reconverted into crystalline phases. The aging in diverse environments of mechanochemically treated bCC produced a mixture of calcite and aragonite in a species-specific mass ratio, while the ACC from gCC converted only into calcite. In conclusion, this research showed that bCC can produce nanocrystalline CaCO3 and ACC composites or mixtures having species-specific features. These materials can enlarge the already wide fields of applications of CaCO3, which span from medical to material science.

6.
Cryst Growth Des ; 23(8): 5801-5811, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37547884

RESUMEN

Scleractinia coral skeleton formation occurs by a heterogeneous process of nucleation and growth of aragonite in which intraskeletal soluble organic matrix molecules, usually referred to as SOM, play a key role. Several studies have demonstrated that they influence the shape and polymorphic precipitation of calcium carbonate. However, the structural aspects that occur during the growth of aragonite have received less attention. In this research, we study the deposition of calcium carbonate on a model substrate, silicon, in the presence of SOM extracted from the skeleton of two coral species representative of different living habitats and colonization strategies, which we previously characterized. The study is performed mainly by grazing incidence X-ray diffraction with the support of Raman spectroscopy and electron and optical microscopies. The results show that SOM macromolecules once adsorbed on the substrate self-assembled in a layered structure and induced the oriented growth of calcite, inhibiting the formation of vaterite. Differently, when SOM macromolecules were dispersed in solution, they induced the deposition of amorphous calcium carbonate (ACC), still preserving a layered structure. The entity of these effects was species-dependent, in agreement with previous studies. In conclusion, we observed that in the setup required by the experimental procedure, the SOM from corals appears to present a 2D lamellar structure. This structure is preserved when the SOM interacts with ACC but is lost when the interaction occurs with calcite. This knowledge not only is completely new for coral biomineralization but also has strong relevance in the study of biomineralization on other organisms.

7.
J Mater Chem B ; 11(32): 7766-7777, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37476854

RESUMEN

We have developed a straightforward, one-pot, low-temperature hydrothermal method to transform oyster shell waste particles (bCCP) from the species Crassostrea gigas (Mg-calcite, 5 wt% Mg) into hydroxyapatite (HA) micro/nanoparticles. The influence of the P reagents (H3PO4, KH2PO4, and K2HPO4), P/bCCP molar ratios (0.24, 0.6, and 0.96), digestion temperatures (25-200 °C), and digestion times (1 week-2 months) on the transformation process was thoroughly investigated. At 1 week, the minimum temperature to yield the full transformation significantly reduced from 160 °C to 120 °C when using K2HPO4 instead of KH2PO4 at a P/bCCP ratio of 0.6, and even to 80 °C at a P/bCCP ratio of 0.96. The transformation took place via a dissolution-reprecipitation mechanism driven by the favorable balance between HA precipitation and bCCP dissolution, due to the lower solubility product of HA than that of calcite at any of the tested temperatures. Both the bCCP and the derived HA particles were cytocompatible for MG-63 human osteosarcoma cells and m17.ASC murine mesenchymal stem cells, and additionally, they promoted the osteogenic differentiation of m17.ASC, especially the HA particles. Because of their physicochemical features and biological compatibility, both particles could be useful osteoinductive platforms for translational applications in bone tissue engineering.


Asunto(s)
Carbonato de Calcio , Nanopartículas , Ratones , Animales , Humanos , Durapatita/farmacología , Osteogénesis , Exoesqueleto
8.
Gels ; 9(4)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37102962

RESUMEN

Fragrances are volatile organic compounds widely used in our daily life. Unfortunately, the high volatility required to reach human receptors reduces their persistency in the air. To contrast this effect, several strategies may be used. Among them, we present here the combination of two techniques: the microencapsulation in supramolecular gels and the use of profragrances. We report a study on the controlled lactonization of four esters derived from o-coumaric acid. The ester lactonization spontaneously occurs after exposure to solar light, releasing coumarin and the corresponding alcohol. To determine the rate of fragrance release, we compared the reaction in solution and in a supramolecular gel and we demonstrated that the lactonization reaction always occurs slower in the gel. We also studied the more suitable gel for this aim, by comparing the properties of two supramolecular gels obtained with the gelator Boc-L-DOPA(Bn)2-OH in a 1:1 ethanol/water mixture in different gelator concentration (0.2% and 1% w/v). The gel prepared with 1% w/v gelator concentration is stronger and less transparent than the other and was used for the profragrances encapsulation. In any case, we obtained a significative reduction of lactonization reaction in gel, compared with the same reaction in solution.

9.
Commun Biol ; 6(1): 66, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653505

RESUMEN

Ocean acidification caused by shifts in ocean carbonate chemistry resulting from increased atmospheric CO2 concentrations is threatening many calcifying organisms, including corals. Here we assessed autotrophy vs heterotrophy shifts in the Mediterranean zooxanthellate scleractinian coral Balanophyllia europaea acclimatized to low pH/high pCO2 conditions at a CO2 vent off Panarea Island (Italy). Dinoflagellate endosymbiont densities were higher at lowest pH Sites where changes in the distribution of distinct haplotypes of a host-specific symbiont species, Philozoon balanophyllum, were observed. An increase in symbiont C/N ratios was observed at low pH, likely as a result of increased C fixation by higher symbiont cell densities. δ13C values of the symbionts and host tissue reached similar values at the lowest pH Site, suggesting an increased influence of autotrophy with increasing acidification. Host tissue δ15N values of 0‰ strongly suggest that diazotroph N2 fixation is occurring within the coral tissue/mucus at the low pH Sites, likely explaining the decrease in host tissue C/N ratios with acidification. Overall, our findings show an acclimatization of this coral-dinoflagellate mutualism through trophic adjustment and symbiont haplotype differences with increasing acidification, highlighting that some corals are capable of acclimatizing to ocean acidification predicted under end-of-century scenarios.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Dióxido de Carbono , Concentración de Iones de Hidrógeno , Agua de Mar/química , Simbiosis , Dinoflagelados/genética , Aclimatación
10.
ACS Omega ; 7(48): 43992-43999, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36506210

RESUMEN

Control over the shape and morphology of single crystals is a theme of great interest in fundamental science and for technological application. Many synthetic strategies to achieve this goal are inspired by biomineralization processes. Indeed, organisms are able to produce crystals with high fidelity in shape and morphology utilizing macromolecules that act as modifiers. An alternative strategy can be the recovery of crystals from biomineralization products, in this case, seashells. In particular, waste mussel shells from aquaculture are considered. They are mainly built up of single crystals of calcite fibers and aragonite tablets forming an outer and an inner layer, respectively. A simple mechanochemical treatment has been developed to separate and recover these two typologies of single crystals. The characterization of these single crystals showed peculiar properties with respect to the calcium carbonate from quarry or synthesis. We exploited these biomaterials in the water remediation field using them as substrate adsorbing dyes. We found that these substrates show a high capability of adsorption for anionic dye, such as Eosin Y, but a low capability of adsorption for cationic dyes, such as Blue Methylene. The adsorption was reversible at pH 5.6. This application represents just an example of the potential use of these biogenic single crystals. We also envision potential applications as reinforcing fillers and optical devices.

11.
Acta Crystallogr D Struct Biol ; 78(Pt 11): 1399-1411, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322422

RESUMEN

Oxygenic phototrophs perform carbon fixation through the Calvin-Benson cycle. Different mechanisms adjust the cycle and the light-harvesting reactions to rapid environmental changes. Photosynthetic glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a key enzyme in the cycle. In land plants, different photosynthetic GAPDHs exist: the most abundant isoform is formed by A2B2 heterotetramers and the least abundant by A4 homotetramers. Regardless of the subunit composition, GAPDH is the major consumer of photosynthetic NADPH and its activity is strictly regulated. While A4-GAPDH is regulated by CP12, AB-GAPDH is autonomously regulated through the C-terminal extension (CTE) of its B subunits. Reversible inhibition of AB-GAPDH occurs via the oxidation of a cysteine pair located in the CTE and the substitution of NADP(H) with NAD(H) in the cofactor-binding site. These combined conditions lead to a change in the oligomerization state and enzyme inhibition. SEC-SAXS and single-particle cryo-EM analysis were applied to reveal the structural basis of this regulatory mechanism. Both approaches revealed that spinach (A2B2)n-GAPDH oligomers with n = 1, 2, 4 and 5 co-exist in a dynamic system. B subunits mediate the contacts between adjacent tetramers in A4B4 and A8B8 oligomers. The CTE of each B subunit penetrates into the active site of a B subunit of the adjacent tetramer, which in turn moves its CTE in the opposite direction, effectively preventing the binding of the substrate 1,3-bisphosphoglycerate in the B subunits. The whole mechanism is made possible, and eventually controlled, by pyridine nucleotides. In fact, NAD(H), by removing NADP(H) from A subunits, allows the entrance of the CTE into the active site of the B subunit, hence stabilizing inhibited oligomers.


Asunto(s)
NAD , Fotosíntesis , NADP/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Fotosíntesis/fisiología , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo
12.
Sci Rep ; 12(1): 16575, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195656

RESUMEN

Stony corals (order: Scleractinia) differ in growth form and structure. While stony corals have gained the ability to form their aragonite skeleton once in their evolution, the suite of proteins involved in skeletogenesis is different for different coral species. This led to the conclusion that the organic portion of their skeleton can undergo rapid evolutionary changes by independently evolving new biomineralization-related proteins. Here, we used liquid chromatography-tandem mass spectrometry to sequence skeletogenic proteins extracted from the encrusting temperate coral Oculina patagonica. We compare it to the previously published skeletal proteome of the branching subtropical corals Stylophora pistillata as both are regarded as highly resilient to environmental changes. We further characterized the skeletal organic matrix (OM) composition of both taxa and tested their effects on the mineral formation using a series of overgrowth experiments on calcite seeds. We found that each species utilizes a different set of proteins containing different amino acid compositions and achieve a different morphology modification capacity on calcite overgrowth. Our results further support the hypothesis that the different coral taxa utilize a species-specific protein set comprised of independent gene co-option to construct their own unique organic matrix framework. While the protein set differs between species, the specific predicted roles of the whole set appear to underline similar functional roles. They include assisting in forming the extracellular matrix, nucleation of the mineral and cell signaling. Nevertheless, the different composition might be the reason for the varying organization of the mineral growth in the presence of a particular skeletal OM, ultimately forming their distinct morphologies.


Asunto(s)
Antozoos , Aminoácidos/metabolismo , Animales , Calcificación Fisiológica/genética , Carbonato de Calcio/química , Minerales/metabolismo , Proteoma/metabolismo
13.
Molecules ; 27(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36080399

RESUMEN

The chemical functionalization of polysaccharides to obtain functional materials has been of great interest in the last decades. This traditional synthetic approach has drawbacks, such as changing the crystallinity of the material or altering its morphology or texture. These modifications are crucial when a biogenic matrix is exploited for its hierarchical structure. In this work, the use of lectins and carbohydrate-binding proteins as supramolecular linkers for polysaccharide functionalization is proposed. As proof of concept, a deproteinized squid pen, a hierarchically-organized ß-chitin matrix, was functionalized using a dye (FITC) labeled lectin; the lectin used was the wheat germ agglutinin (WGA). It has been observed that the binding of this functionalized protein homogenously introduces a new property (fluorescence) into the ß-chitin matrix without altering its crystallographic and hierarchical structure. The supramolecular functionalization of polysaccharides with protein/lectin molecules opens up new routes for the chemical modification of polysaccharides. This novel approach can be of interest in various scientific fields, overcoming the synthetic limits that have hitherto hindered the technological exploitation of polysaccharides-based materials.


Asunto(s)
Lectinas , Polisacáridos , Quitina , Lectinas/metabolismo , Lectinas de Plantas , Aglutininas del Germen de Trigo/química , Aglutininas del Germen de Trigo/metabolismo
14.
Chem Soc Rev ; 51(18): 7883-7943, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35993776

RESUMEN

Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.


Asunto(s)
Carbonato de Calcio , Nanocompuestos , Materiales Biocompatibles , Carbonato de Calcio/química , Emulsiones , Hidrogeles , Minerales , Plásticos , Agua/química
15.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35806261

RESUMEN

Biomaterials such as seashells are intriguing due to their remarkable properties, including their hierarchical structure from the nanometer to the micro- or even macroscopic scale. Transferring this nanostructure to generate nanostructured polymers can improve their electrical conductivity. Here, we present the synthesis of polypyrrole using waste seashell powder as a template to prepare a polypyrrole/CaCO3 composite material. Various synthesis parameters were optimized to produce a composite material with an electrical conductivity of 2.1 × 10-4 ± 3.2 × 10-5 S/cm. This work presents the transformation of waste seashells into sustainable, electronically conductive materials and their application as an antistatic agent in polymers. The requirements of an antistatic material were met for a safety shoe sole.


Asunto(s)
Polímeros , Pirroles , Exoesqueleto , Animales , Materiales Biocompatibles/química , Conductividad Eléctrica , Polímeros/química , Pirroles/química
16.
Redox Biol ; 54: 102387, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35793584

RESUMEN

S-nitrosylation is a redox post-translational modification widely recognized to play an important role in cellular signaling as it can modulate protein function and conformation. At the physiological level, nitrosoglutathione (GSNO) is considered the major physiological NO-releasing compound due to its ability to transfer the NO moiety to protein thiols but the structural determinants regulating its redox specificity are not fully elucidated. In this study, we employed photosynthetic glyceraldehyde-3-phosphate dehydrogenase from Chlamydomonas reinhardtii (CrGAPA) to investigate the molecular mechanisms underlying GSNO-dependent thiol oxidation. We first observed that GSNO causes reversible enzyme inhibition by inducing S-nitrosylation. While the cofactor NADP+ partially protects the enzyme from GSNO-mediated S-nitrosylation, protein inhibition is not observed in the presence of the substrate 1,3-bisphosphoglycerate, indicating that the S-nitrosylation of the catalytic Cys149 is responsible for CrGAPA inactivation. The crystal structures of CrGAPA in complex with NADP+ and NAD+ reveal a general structural similarity with other photosynthetic GAPDH. Starting from the 3D structure, we carried out molecular dynamics simulations to identify the protein residues involved in GSNO binding. The reaction mechanism of GSNO with CrGAPA Cys149 was investigated by quantum mechanical/molecular mechanical calculations, which permitted to disclose the relative contribution of protein residues in modulating the activation barrier of the trans-nitrosylation reaction. Based on our findings, we provide functional and structural insights into the response of CrGAPA to GSNO-dependent regulation, possibly expanding the mechanistic features to other protein cysteines susceptible to be oxidatively modified by GSNO.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas , S-Nitrosoglutatión , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , NADP/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción , Fotosíntesis , S-Nitrosoglutatión/metabolismo , Compuestos de Sulfhidrilo/metabolismo
17.
R Soc Open Sci ; 9(5): 211943, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35620014

RESUMEN

Otolith biomineralization results from biochemical processes regulated by the interaction of internal (physiological) and external (environmental) factors which lead to morphological and ultrastructural variability at intra- and interspecific levels. The aim of this study was to conduct a multi-scale analysis of the sagittal otoliths of the Merlucius merlucius (European hake) from the western Adriatic Sea in order to correlate otolith features with fish ontogeny and sex. We show that otoliths of sexually undifferentiated (non-sexed) individuals having a fish body total length (TL) less than 15 cm had faster growth in length, width, area, perimeter, volume and weight and a higher amount of organic matrix compared with otoliths of sexually differentiated individuals (females and males) having a fish size range of 15-50 cm. Most importantly, with increasing fish TL, female saccular otoliths contained a higher number of protuberances and rougher surface compared with male specimens, which showed more uniform mean curvature density. The differences between females and males discovered in this study could be associated with fish hearing adaptation to reproductive behavioural strategies during the spawning season. The outcomes of this research provide insights on how size and sex-related variations in otolith features may be affected by fish ecological and behavioural patterns.

18.
Gels ; 8(2)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35200480

RESUMEN

The three gelators presented in this work (Boc-D-Phe-L-Oxd-OH F0, Boc-D-F1Phe-L-Oxd-OH F1 and Boc-D-F2Phe-L-Oxd-OH F2) share the same scaffold and differ in the number of fluorine atoms linked to the aromatic ring of phenylalanine. They have been applied to the preparation of gels in 0.5% or 1.0% w/v concentration, using three methodologies: solvent switch, pH change and calcium ions addition. The general trend is an increased tendency to form structured materials from F0 to F1 and F2. This property ends up in the formation of stronger materials when fluorine atoms are present. Some samples, generally formed by F1 or F2 in 0.5% w/v concentration, show high transparency but low mechanical properties. Two gels, both containing fluorine atoms, show increased stiffness coupled with high transparency. The biocompatibility of the gelators was assessed exposing them to fibroblast cells and demonstrated that F1 and F2 are not toxic to cells even in high concentration, while F0 is not toxic to cells only in a low concentration. In conclusion, the presence of even only one fluorine atom improves all the gelators properties: the gelation ability of the compound, the rheological properties and the transparency of the final materials and the gelator biocompatibility.

19.
Sci Rep ; 11(1): 19927, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620911

RESUMEN

This study investigates the effects of long-term exposure to OA on skeletal parameters of four tropical zooxanthellate corals naturally living at CO2 seeps and adjacent control sites from two locations (Dobu and Upa Upasina) in the Papua New Guinea underwater volcanic vent system. The seeps are characterized by seawater pH values ranging from 8.0 to about 7.7. The skeletal porosity of Galaxea fascicularis, Acropora millepora, massive Porites, and Pocillopora damicornis was higher (up to ~ 40%, depending on the species) at the seep sites compared to the control sites. Pocillopora damicornis also showed a decrease of micro-density (up to ~ 7%). Thus, further investigations conducted on this species showed an increase of the volume fraction of the larger pores (up to ~ 7%), a decrease of the intraskeletal organic matrix content (up to ~ 15%), and an increase of the intraskeletal water content (up to ~ 59%) at the seep sites. The organic matrix related strain and crystallite size did not vary between seep and control sites. This multi-species study showed a common phenotypic response among different zooxanthellate corals subjected to the same environmental pressures, leading to the development of a more porous skeletal phenotype under OA.


Asunto(s)
Aclimatación , Antozoos/anatomía & histología , Antozoos/fisiología , Dióxido de Carbono/metabolismo , Animales , Clima , Arrecifes de Coral , Ambiente , Geografía , Concentración de Iones de Hidrógeno , Papúa Nueva Guinea , Agua de Mar/química , Termogravimetría
20.
Sci Rep ; 11(1): 19244, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584132

RESUMEN

The fan shell Pinna nobilis is the largest bivalve endemic to the Mediterranean and is actually a strongly endangered species. Due to the biological, ecological, and historical relevance of this species, the research of a non-lethal method to relate the element content in organism's tissues and environment can provide information potentially useful to evaluate environmental pollution and organism physiological status. In this study, a screening on element concentration in the animal growing environment (seawater and sediments) and in four soft tissues (hepatopancreas, gills, mantle, and muscle), and two acellular tissues (calcite shell layer, and byssus) was performed. The comparison among these results was used to assess whether the no-lethal acellular tissue element concentration can be used to reveal the element presence in the environment and soft tissues. Elements, such as B, Ag, As, Mn, Mo, Pb, or Se, showed a possible relationship between their presence in the byssus and soft tissues. In the byssus Cr, Sb, Sn, and V have shown to be mostly related to the environment, more than the soft tissues, and might be used to draw a historical record of the exposure of the organism. The element concentration in the calcite shell layer did not relate with environmental element concentrations. Essential elements, like Cu, Fe, Ni, and Zn, were present in calcite shell layer and byssus and are likely related to their biological activity in the organism. The research also gave an overview on the presence of pollution and on the preferential intake route of the element. In summary, this study, performed on a limited number of specimens of this protected species, indicated that element concentration in the byssus can be applied as non-lethal method to monitor this endangered species and its interaction with the elements in the growing environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...